

James Ruse Agricultural High School

2022 Year 12 TRIAL HSC EXAMINATION

Mathematics Extension 1

General	Reading time – 10 minutes Working time – 2 hours			
	 Working time – 2 nours Write using black pen Calculators approved by NESA may be used A reference sheet is provided For questions in Section II, show relevant mathematical reasoning and/ or calculations 			
Total marks: 70	 Section I – 10 marks (pages 2–5) Attempt Questions 1–10 Allow about 15 minutes for this section 			
	 Section II – 60 marks (pages 7–12) Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section 			

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 The diagram below shows the graph of $P(x) = a(x+b)(x+c)(x+d)^2$.

Which of the following is a possible set of values for a,b,c and d?

- A. -24, 3, 1, -2
- B. −2, 3, 1, −2
- C. -2, -1, -3, 2
- D. -24, -1, -3, 2

2 f(x) is an odd function and f(-1) < 0. A possible graph showing y = f(-|x|) is

- 3 Which is a correct anti-derivative for $\frac{6}{\sqrt{4-9x^2}}$?
 - A. $\sin^{-1}\left(\frac{3x}{2}\right)$
 - B. $2\sin^{-1}\left(\frac{3x}{2}\right)$
 - C. $3\sin^{-1}\left(\frac{3x}{2}\right)$
 - D. $6\sin^{-1}\left(\frac{3x}{2}\right)$
- 4 Consider two hot bodies, A and B, which have temperatures of 120° C and 80° C at t = 0 seconds. The temperature of the surrounding is 40° C. The ratio of the rate of cooling of body A to body B at t = 0 seconds will be:
 - A. 1:2
 - B. 2:1
 - C. 3:2
 - D. 2:3

5 Which of the following differential equations yields the direction field below?

111

1

11111

$$\frac{dy}{dx} = \frac{x\cos(x+y)}{y}$$

$$\frac{dy}{dx} = \frac{y\cos(x+y)}{x}$$

$$\frac{dy}{dx} = \frac{y\sin(x+y)}{y}$$

- 6 A particle has position vector given by $\underline{r}(t) = \cos^{-1}(t)\underline{i} + \sin^{-1}(t)\underline{j}$. The distance travelled by the particle in the interval [-1,1] is closest to
 - A. 6

A.

Β.

C.

D.

- B. $\sqrt{3}\pi$
- C. 5
- D. $\sqrt{2}\pi$

- 7 Given $\cos(3\theta) = 4\cos^3\theta 3\cos\theta$, which of the following is the simplified form of $\cos^{-1}(4x^3 3x)$?
 - A. $\pi 3 \sin^{-1} x$
 - B. $3 \sin^{-1} x$
 - C. $3\cos^{-1}x$
 - D. $\pi 3\cos^{-1} x$

8 How many integers do not satisfy the inequality $3|x - 1| + x^2 - 7 > 0$?

- A. 4
- B. 3
- C. 2
- D. 1

10 The graph of $y = \frac{1}{a + bx + 4ax^2}$, where a > 1, has only one asymptote when

- A. -5 < b < 5
- B. $b \leq -4a$ or $b \geq 4a$
- C. $-1 \le b \le 4$
- D. b < -4a or b > 4a

Section II

60 marks Attempt Questions 11 – 14 Allow about 1 hour and 45 minutes for this section

Answer each question on a new page. Extra writing pages are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new page

(a) Consider the graph of $f(x) = (x + 1)^2(x - 1)$ given below.

Using the axes provided on the reverse of the Multiple Choice answer sheet, sketch the graph of $y^2 = f(x)$, showing all essential features.

(b) Use the substitution $u = e^{2x}$ to find

$$\int \left(e^{e^{2x}}\right)^2 e^{2x} dx$$

Question 11 continues over the page

3

2

- (c) Three forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, and $\overrightarrow{F_3}$ are represented by vectors $10\underline{i}+20\underline{j}$, $20\underline{i}-30\underline{j}$ and $-6\underline{i}+20\underline{j}$. Newtons respectively.
 - (i) Draw a sketch showing the relative magnitude and direction of the three forces. 2
 - (ii) Determine the resultant force, expressed as a vector, and find its magnitude. 2
 - (iii) An additional force $\overrightarrow{F_4} = k \underline{j}$ is now applied so that the resultant of $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, and $\overrightarrow{F_3}$ and $\overrightarrow{F_4}$ has magnitude 30N. What is the value of k?
- (d) You are asked to provide an 8-letter password which may only be comprised of the letters A, B and C.

(i)	How many 8-letter passwords are there to choose from?	1
(ii)	How many of the 8-letter passwords contain only B's and C's?	1
(iii)	If you decide that your 8-letter password must use each of the letters A, B and C at least once, how many possible passwords are there to choose from?	2

End of Question 11

Question 12 (15 marks) Start a new page

- (a) The quartic polynomial $P(x) = x^4 + px^3 + qx^2 + px + 1$ has $x = \alpha$ as a double zero.
 - (i) Show that α^{-1} is also a zero of P(x). 2
 - (ii) Find the fourth root in terms of α .
 - (iii) Hence show that $p^2 = 4(q-2)$.
- (b) Suppose 3000 people are surveyed on political preference and asked the following **3** question:

"Would you vote for Party A in the next election, yes or no?"

If the actual probability of selecting someone in the affirmative is p = 0.55, find, using the normal distribution, the probability that the sample proportion \hat{p} is within 2% of the actual value p.

You may use the z-score table provided.

(c)

(i) Show that the differential equation

$$\frac{dy}{dx} = \frac{2xy}{x^2 - 1}$$

describes a family of parabolas with x-intercepts at (1, 0) and (-1, 0).

(ii) Now consider the differential equation

$$\frac{dy}{dx} = \frac{1 - x^2}{2xy}$$

Find the equation of the curve which satisfies this differential equation and passes through the point (1, 1). Express your answer as a function of x.

(iii) What can be said about the curve in part (ii) in relation to the family of curves **1** in part (i)?

End of Question 12

3

2

3

1

Question 13 (15 marks) Start a new page

- (a) A student is given the chance to win 6^X dollars on two rolls of an unbiased, six-sided die, where X is the number of times a '3' is rolled.
 - (i) What is the most the student may win? 1
 - (ii) How much is the student expected to win? Give your answer correct to two decimal places.

3

3

- (b) Solve for all $x \in \mathbb{R}$: $\sin x + \cos 2x \sin 3x = 0$
- (c) Consider the curve $y = 3\cos^{-1}\left(\frac{x}{2}\right)$.
 - (i) Sketch the graph of the curve $y = 3\cos^{-1}\left(\frac{x}{2}\right)$. 2
 - (ii) The area bounded by the curve $y = 3\cos^{-1}\left(\frac{x}{2}\right)$, the y-axis and the lines $y = \frac{\pi}{2}$ 4 and $y = \frac{5\pi}{2}$ is rotated around the y-axis to form an hourglass. Find the volume of the hourglass formed.
- (d) Prove by mathematical induction for all positive integers $n \ge 1$ that
 - $1^2 \times 2 + 2^2 \times 2^2 + 3^2 \times 2^3 + \dots + n^2 \times 2^n = (n^2 2n + 3)2^{n+1} 6$

End of Question 13

Question 14 (15 marks) Start a new page

(a) Let $f(x) = \frac{1}{2}(2x - 1 + 2\sin x)$. The graphs of y = f(x) and $y = f^{-1}(x)$ are shown below.

1

3

- (i) Find the points of intersection of the two curves.
- (ii) Find the shaded area enclosed by the two curves.

(b) Six points P_1 , P_2 , P_3 , P_4 , P_5 and P_6 form the vertices of a regular hexagon H₁. An animated program is rotating these six points at a constant speed of 3 cm/s around the perimeter of another regular hexagon, H₂, which has side length of 20 cm.

Initially, the six vertices of H_1 lie on top of the six vertices of H_2 . Determine the rate of change of the area of H_1 ten seconds after the animation begins.

Question 14 continues over the page

- 11 -

(c) Triangle *OAB* is defined by two non-parallel and non-zero vectors $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$. The angle between the vectors \underline{a} and \underline{b} is θ .

Express the area of triangle OAB in terms of dot products of \underline{a} and \underline{b} .

(d) Show that
$$\cos\left(\tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right) + \cos^{-1}x\right) = 0$$
 for all real $x, -1 < x < 1$.
You may assume that the range of $\frac{x}{\sqrt{1-x^2}}$ is all real numbers.

End of Question 14

End of Examination.

BLANK PAGE

MC.

- 1. B
- 2. C
- 3. B
- 4. B
- 5. A
- 6. D
- 7. C
- 8. A
- 9. D 10. C

Question 11

Sunday, 21 August 2022 6:57 PM

Sunday, 21 August 2022 8:57 PM

()ii) Fret = 10: +20: + 20: - 30: - 6: + 20: D for net force = 24: + 10; Fresh = 1 242+ 102 D for maynitude = 5676 = 26 N iii) 242+10j+kj = 2412 + (L+10) 1) for correct setup $724^{2}+(k+10)^{2}=30$ $24^{2} + (k+10)^{2} = 900$ D for correct values of k (k+10) = 324 K+10 = ±18 L= = 18-10 =-28,8 d)i) 3⁸= 6561 () mark for correct unsuer ii) 2⁸ = 256 D mark for correct answer Also accepted interpretation of 28-2=254 which which only B's & C's but excludes iii) 3°-3x256 +3 = 5796 all b's & all C's 01 38- 3x254 = 579b 2) marks for full correct answer 1) for 3°- 3×256 = 5793

MATHEMATICS Extension 1 : Question. 1.2			
Suggested Solutions	Marks Awarded	Marker's Comments	
$(L) P(x) = x^{4} + Px^{3} + qx^{2} + Px + 1$ = 0 $P(\frac{1}{x}) = \frac{1}{84} + \frac{P}{x^{3}} + \frac{q}{x^{2}} + \frac{P}{x^{2}} + 1$	 for P(2)=0	o Some students went on incorrect root and made it hard for themselves	
$= \frac{1 + p \alpha + q \alpha^2 + p \alpha^3 + \alpha^4}{\alpha^4}$ $= 0$ $\therefore P(\frac{1}{\alpha}) \text{ is a root}$	ł	a students lost 	
(ui) Product of roots $\alpha_1 \alpha_1 \frac{1}{2} \frac{1}{2} \frac{1}{2}$ $\alpha_1^2 \times \frac{1}{2} \times \frac{1}{2} = 1$ $\beta = \frac{1}{2}$ (ui) sum of the roots	1	• need to use the term without P or q • students using other terms struggled to find the root.	
$\chi + \chi + \frac{1}{\chi} = -P$ $2(\chi + \frac{1}{\chi}) = -P$ Sum of the roots 2 of 9 time $\chi^{2} + \chi + \chi + \chi + \chi + \chi + \frac{1}{\chi} = 0$ $Q = \chi^{2} + \frac{1}{\chi} + 4$	•	 some students failed to have regative sign x²+1+2-a common a²+1+2-a common incorrect answer 	

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

i

•

MATHEMATICS Extension 1 : Question			
Suggested Solutions	Marks Awarded	Marker's Comments	
$P^{2} = 4(x^{2} + \frac{1}{x^{2}} + 2)$ = 4(q-2)	ļ	equating coefficients could gain correct answer.	
(b) $c_{55} = p_{55} = p_{55} = 0.055 \pm 0.055 \times 0.02$ $c_{53} = p_{5} = 0.0561$ $6^{2} = p_{9} = \sqrt{0.0000525} = 0.0001$		• significant number ef students just did 0.55-0.02 and 0.55+0.02 gave 0.9722.98 guswei	
$Z_1 = 0.54 - 0.55$ $Z_2 = 0.56 - 0.57$ 0.00911 $0.00911= -1.211$ $= 1.211Using L tableviormal$	l (
2 P(0.8869-0.5) = 0.7738			

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

MATHEMATICS Extension 1 : Ouestion 2			
Suggested Solutions	Marks Awarded	Marker's Comments	
$\binom{c}{(\iota)}\frac{dy}{d\chi} = \frac{2\chi y}{\chi^2 - 1}$		well done	
$\int \frac{dy}{y} = \int \frac{2x}{x^2 - 1} dx$		Vin when which the	
$\ln y = \ln x^2 - 1 + c$	1	- studets wiche	
$ y = e^{\ln x^2 - 1 + C}$ = $e^{C} x^2 - 1 $		191=(22-11+c which does give	
Y = A(x-1)(x+1) which is a family of parabolas with x-intercepts (-1,0) a-al(1,0)	1	estudents need to make sure they answer question	
$ \begin{array}{c} (u) \frac{dy}{dx} = \frac{1 - x^2}{2xy} \end{array} $			
$\int 2y dy = \int \frac{1 - \chi^2}{2\chi} d\chi$ $y^2 = 4 \ln \chi - \frac{\chi^2}{2} + C$			
$ (1,1) 1 = \ln 1 - \frac{1}{2} + C C = \frac{3}{2} $		careless arithmetic circis.	
$y^{2} = \ln z - \frac{2}{2} + \frac{3}{2} + hrough$ $x = 1, y = 1$ So $y = \sqrt{\ln x - \frac{x^{2}}{2} + \frac{3}{2}}$	1	nerected to write as a function of X y=== v is not a function	

.

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

i

MATHEMATICS Extension 1 : Question				
Suggested Solutions	Marks Awarded	Marker's Comments		
(iii) $dy = dy = -1$ the curve in part(ii) meets the family of parabalas 1 - part(i) at right angles		Poorly done Poorly done Inverse functions was common propriet answer. Needed to methin right angle to gain mark.		

.

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

MATHEMATICS Extens	ion 1 : Question Marks	Marker's Comments
$(1) i) 6^2 = 36$	Awarded İ	well done
(ii) P= 6 E(6x)		· ·
$6^{\circ}\binom{2}{0}\binom{1}{6}\binom{5}{6}^{2} + 6^{\prime}\binom{2}{1}\binom{1}{6}\binom{5}{6} + 6^{\prime}\binom{2}{2}\binom{1}{6}$		1 for binomial 2 for correct answer
$=\frac{1}{36}(25+60+36)$ = \$3.36		· poorly done must students used 0,1,2 not 6,6, \$1.82 romanincor answer. · students who showed binomial gained I mark
b) $51-3k + \cos 2x - \sin 3x = 0$ $51n x - \sin 3x = 2\cos 2x \sin (-x)$ $\cos 2x - 2\cos 2x \sin x = 0$ $(\cos 2x - (1 - \sin x)) = 0$ $\cos 2x - 2\cos 2x \sin x = 1$ $\cos 2x - 2\cos 2x \sin x = 1$		I mark for correct manipulation of trig result 2 marks for galnin correct equation

•

	MATHEMATICS Extension 2: Question.				
Suggested Solutions	Marks Awarded	Marker's Comments			
b) $2\chi = (2\kappa + 1) \prod_{2} \chi = (2\kappa + 1) \prod_{2} \chi$ $\chi = \kappa \pi + (-1)^{\kappa} \prod_{6} \kappa \kappa Z$	Ì	neecled to generate all solution i neecled to ER off which solution			
(ii) $\chi = 2\cos(\frac{y}{2})$		nev clock negative an well			
$\chi^{2} = 4 \cos^{2} \frac{y}{3}$ $V = \pi \int \chi^{2} \frac{dy}{dy} + \pi \int \chi^{1} \frac{dy}{dy}$ $\frac{\pi}{2} \qquad 3\pi$					
$= 2 \pi \int_{2}^{2} \frac{4 \cos^2 y}{3} dy$ $= 2 \pi \int_{2}^{2} \frac{3 \pi}{2}$ $= 2 \pi \int_{2}^{2} \frac{2(1 + \cos^2 y)}{3} dy$	1				
$= 4\pi^{2} \frac{1}{2} 1$	for converti- cusizzy 1 for 1 heretion	Solutions with 1-rov pect limits Neurletci to Evelucite SI-II			

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

.

1

I mark for correct shipe

· Many students made it look like a horizontal point of inflexion and did not gain mark

 $\bigvee y = 3\cos^{-1}\left(\frac{x}{2}\right)$

- I mark for correct position
- · students used poor scales which distorted graph because they were different on each axis.

MATHEMATICS Extension 1 : Question. 1.3			
Suggested Solutions	Marks Awarded	Marker's Comments	
(d) $n = 1$ LHS= 1×2 $FHI = (1-z+3)z-6$ = z = z $\therefore LHS = PHS$ so true for $n=1$		o must write LHJ and RHS not Cis one long statement.	
Prove true for $n = k$ $1^{2}x^{2} + 2^{2}x^{2} + \cdots + k^{2}x^{2} + (k^{2}2k+3)x$ Assume true for $n = k+1$ $1^{2}x^{2} + \cdots + k^{2}x^{2} + (k+1)^{2}x^{2} + 1$	2 ^{K+1} -6		
$= ((k+1)^{2} - 2(k+1)+3) \times 2^{k+2} - 6$ $= (k^{2}-2k+3)2^{k+1} -		well done. Necci to make it clear when you we using assimption	

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

÷

(4

MATHEMATICS X1 : Question			
Suggested Solutions	Marks Awarded	Marker's Comments	
Now PHS=(+2+2++1-2k-2+3)2kH	-2 6		
$=(p^{c}+c)-G$			
= LHI			
mathematical induction			
for ~71			

•

.

D:\Mathsv8\marking templates\Suggested Mk solns template.doc

.

Question 14

Sunday, 21 August 2022 9:27 PM

a) i) point of intersection of f(x) & f⁻¹(x) is the same as point of intersection of f(x) & x カ(2x-1+2sinx)=x 2x-1+25inx=2n 2 sinx = 1 sinx= 12 X= == + 2hm, ST + 2hm keZ a= 76, 55, 135 () mark for correct general solution or correct first 2 solutions ii) A = 2 f(x) - x dx + 2 f(x) dx $= 2 \int_{\frac{1}{2}}^{\frac{1}{2}} (2x-1+2\sin x) - x \, dx + 2 \int_{\frac{5\pi}{2}}^{\frac{1}{2}} x - \frac{1}{2} (2x-1+2\sin x) \, dx \quad (1) \text{ for correct setup}$ $= \int_{\Xi}^{S_{2}} 2n - 1 + 2 \sin n - 2n \, dn + \int_{S_{2}}^{S_{2}} 2n - (2n - 1 + 2 \sin n) \, dn$ $= \int_{II}^{Sin} \chi - 1 \, dx + \int_{SII}^{VI} 1 - 2 \sin \chi \, dx$ $= \left[-2 \cos \lambda - \lambda_{-} \right]_{\overline{L}}^{5} + \left[\lambda + 2 \cos \lambda_{-} \right]_{\overline{S}_{0}}^{5} \\ = \left(-2 \cos^{5} \frac{1}{6} - \frac{5}{6} \right) - \left(-2 \cos^{5} \frac{1}{6} - \frac{1}{6} \right) + \left(\frac{13\pi}{6} + 2 \cos^{5} \frac{1}{6} \right) - \left(\frac{5\pi}{6} + 2 \cos^{5} \frac{1}{6} \right) \right]$ (1) for wrect aniderivative = -2x-9 - 5 +2x 1 + 5 + 3 + 2x 2 - 5 - 2x-9 = 13 - 5 + 13 + 5 + 5 + 15 + 13 - 5 + 13 4 13+25 1) for evaluating urrectly

b) Let x be the distance each vertex on 4, forels after t seconds dr = 3 cm/s het A = area of H, $\frac{dA}{dt} = \frac{dA}{dx} + \frac{dx}{dt}$ Let I be the side length of H, l²= x²+(20-x)²-2xx(20-x) 105120° = x²+400-40x+x²-2x(20-x)(-2) $= \chi^{2} + 400 - 40\chi + \chi^{2} + 20\chi - \chi^{2}$ 1) for finding an expression for the side bength = x2 - 20x + 400 of th A= 6x 2× l× l× sin 60° :390 = 3/2 (n2-20x+450) 1) for finding an expression for the area of H. k = 3 (2x-20) = 383 (x-10) dA At = 313(x-10) x3 = 9B(x-10) After 10s, the paint has travelled 3x10=30cm, 30-20=10 so it is 10cm from the vertex 1) for finding correct value of x to sub in is need to sub in x= (0 dA df = 9(3(10-10) 1) for finding the correct expression for the and = 0 cm² |s evaluating correctly when x=10.

c) & b= |a||b| ues 8 ____ A======== 2A = 1911/21 sin 8 _ 2 $(1^2 + (2)^2 + (2)^2 + (2)^2 = 12 ||2||^2 + (2)^2 +$ 1) mark for using Pythaysrean = $|3|^2 |b|^2 (105^2 9 + 5m^2 9)$ = (a)²[b)² identity $4A^{2} = |a|^{2} |b|^{2} - (a \cdot b)^{2}$ $2A = \sqrt{|a|b|^2 - (a \cdot b)^2} \quad (A70)$ I mark for simplifying to this $A = \frac{1}{2}\sqrt{|a|^2|b|^2 - (a \cdot b)^2}$ = $\frac{1}{2} \int ((\underline{a}, \underline{a})(\underline{b}, \underline{b}) - (\underline{a}, \underline{b})^{2}$ O mark for final expression only in dot products A= 2 g. b tand both got I mark $A = \frac{1}{2} |2| |2| \sin \left(\frac{2 \cdot 2}{181191} \right)$ d) Let $\alpha = \tan^{-1} \frac{x}{\sqrt{1-x^2}}$, $\beta = \cos^{-1} x$ $\tan d = \frac{\chi}{\sqrt{1-\chi^2}} \qquad \chi = \cos \beta$ When OCALI and OCALE D mark for drawing triangles correctly $\frac{1}{\sqrt{1-\chi^2}}$ (as $\alpha = \sqrt{1-\chi^2}$ sin $\alpha = \chi$ & fully labeled. 1) mark for considering all cases, not just when OCXLI and OCBCE $\frac{1}{2} \sqrt{1-2^2} \log \beta = 2$ Sin $\beta = \sqrt{1-2^2}$ the acute cases when -1<x<0 and -Eluco $\int \frac{\sqrt{1-x^{2}}}{1-x^{2}} \chi \qquad (05.04 = \sqrt{1-x^{2}})$ When -1<x20 and T2<b<T $\int \frac{1}{1-x^2} \int \frac{\beta}{1-x^2} + (0 \le \beta = x, \sin \beta = \sqrt{1-x^2}$ $\cos(\tan^{-1}(\frac{x}{1-x^{2}}) + \cos^{-1}x) = 0$ for $x \in (-1,1)$ O murk for expanding using compound angles $\cos\left(\frac{\tan^{-1}\left(\frac{2}{\sqrt{1-x^{2}}}\right)}{\sqrt{1-x^{2}}}\right)\cos\left(\cos^{-1}x\right) - \sin\left(\frac{\tan^{-1}\left(\frac{2}{\sqrt{1-x^{2}}}\right)}{\sqrt{1-x^{2}}}\right)\sin\left(\cos^{-1}x\right)$ (VI-x2)X-XJI-x2 = 0 for all cases 1) mark for showing that the expression = 0